Notifications
Clear all

COOL caffeine info.


53x12
(@53x12)
Eminent Member
Joined: 6 years ago
Posts: 24
Topic starter  

Ok... folks I usually keep my threads and/or replies experienced based.

In this case I'm going clinical on your asses (LOL). I havent read the whole thing yet, but those of you who have been around know I'm all about caffeine. Thought you'd be interested...over the years there is ALWAYS plenty of chatter around stims and caffeine.

check it:

Introduction Coffee was first discovered over 1000 years ago although it has been around and used by humans since the Stone Age. People noted the affects on animals and used it by chewing on seed, bark or leaves of certain plants to gain the effects of elevated mood and decreased fatigue. It is thought to be the most widely used psychostimulant in the world. Sources estimate 120,000 tons of caffeine is consumed annually. 90% of adults in North America consume some caffeine daily. Just witness the explosion of coffee vendors on every street corner and the waiting lines at your local Starbucks.

Caffeine was discovered by a German chemist, Friedrich Ferdinand Runge, in 1819. Caffeine is also called guaranine which is found in guarana, mateine when found in mate and theine when found in tea but all of these are synonyms for the same compound, trimethylxanthine.

It is found in many plants and acts as a natural pesticide that paralyzes and kills certain insects feeding on the plants. Note that in many natural sources of caffeine other compounds are present that have other effects such as theophylline and theobromine. In humans, caffeine is used as a central nervous system stimulant and is most often obtained from coffee.

Caffeine continues to be one of the most studied and consumed ergogenic substances. Researchers are constantly re-designing studies to get a clearer indication of how caffeine improves performance. Each year new studies are published on the effects of caffeine on endurance activities. Everyone knows that a strong cup of Java gives you alertness and sense of extra energy. Does the caffeine simply make you want to run a marathon or does the caffeine actually help you finish it faster? And can it do so safely? and how much is safe? Some of the more recent reviews will be discussed in this newsletter.

Historically, athletes have used caffeine to enhance their performance. Prior to 2004, caffeine was banned by the US Olympic Committee, World Anti-Doping Association (WADA) and US Anti-doping association. The level at which caffeine was banned was 12 mcg/ml in urine, which requires about 1,200 mg of pure caffeine or 8 cups of strong coffee. However, this decision was reversed in 2004, allowing the use of caffeine in elite level sports. Fortunately, the dose required to elicit an ergogenic effect is much less than the level banned thus to gain benefit an athlete does not have to suffer toxicity.

There is general agreement that:

1. Caffeine does not appear to benefit short term, high intensity exercise

2. Caffeine can enhance performance in endurance sports.

Caffeine acts through multiple mechanisms by acting on receptors and channels in the cell membrane as well as acting on calcium and cyclic AMP pathways. The principal mode of action is as an agonist at adenosine receptors in the brain as its structure is similar to adenosine. This results increased activity of dopamine. Caffeine also increases release of acetylcholine in the prefrontal nucleus resulting in increased wakefulness and locomotor activity. Caffeine also increases levels of epinephrine and adrenaline as well as levels of serotonin, resulting n positive changes in mood.

Caffeine is a competitive inhibitor of cAMP-phosphodiesterase thus resulting in an increase in cAMP in cells. Thus caffeine intensifies and prolongs the effect of epinephrine. This also increases activation of protein kinase A which is important in glucose syntheses.

Metabolites of caffeine contribute to caffeine’s effects. Theobromine is a vasodilator and increases oxygen and nutrient flow to the brain and to the muscles. Theophylline acts as a smooth muscle relaxant and acts to relax the bronchioles and is a chronotrope and inotrope affecting an increase in heart rate and efficiency. The third metabolite, paraxanthine, increases lipolysis which releases glycerol and fatty acids into the blood to be used as a fuel by muscles.

So in plain words what this means for the athlete is that caffeine in moderate amounts improves alertness, and increases the use of fat as fuel. At the same time, caffeine opens the bronchioles and improves cardiac efficiency. Caffeine use can thus spare glycogen which is the principal fuel for muscles. This means that exercise can be prolonged as glycogen is the principal fuel for muscles. In fact, caffeine has been shown to decrease glycogen utilization by as much as 50%. Thus more glycogen is available at the later stages of exercise. Subjects of experimental studies were able to exercise longer before exhaustion would occur by enhancing the use of fat as fuel and preserving glycogen. The critical period when glycogen sparing occurs is during the first 15 minutes of exercise. Pre-race caffeine may thus be beneficial in a longer a race.

There is some controversy surrounding the lifted ban since caffeine does have some ergogenic properties but it can also be dangerous if abused. Back to running the marathon: caffeine can help you run it faster, but only if done correctly, so let’s talk about who can benefit from caffeine and how it can be properly used.
Notes to consider:

Caffeine is often mistakenly classified as a diuretic. Diuresis (elimination of water from the body) can complicate an individual’s water balance, which determines how efficient he/she will perform by decreasing stroke volume and the amount of blood delivered with each heart beat. However, research performed on trained athletes has NOT FOUND caffeine to cause a diuretic effect. See Diuretic Effects of Caffeine for more details.
Caffeine has thermogenic properties. This means ingestion of caffeine can raise your core body temperature. Recent research has not shown this to be true (Roti, Miller). Two separate placebo -controlled studies have shown no difference in urinary or plasma electrolytes, thermoregulatory variables or cardiovascular variables, even in warm, humid environments.
Because our body has the ability to build a tolerance to caffeine, it has been suggested to athletes to abstain from caffeine use days/weeks prior to a race. The theory behind this method is to allow the body to become accustomed to not having caffeine and with reintroduction the ergogenic effect will be increased. However, research indicates that the body will respond to the withdrawal from caffeine experienced overnight as much as abstaining from caffeine over prolonged periods of time. The half life (time of clearance) of caffeine in the body is 6 hours. A study by Roti et al. showed improved exercise heat tolerance in a group chronically receiving caffeine compared to placebo.
Recently published research supporting use of caffeine with trained athletes:

Kovacs et al. (1998) studied well-trained cyclists. The results of this study support the use of caffeine during competition to improve performance. In this study, 15 cyclists ingested different levels of caffeine in addition to a carbohydrate-electrolyte drink during a time trial. The highest caffeine doses (225 and 320 mg) resulted in a 5% increase in power relative to control trials without caffeine (308 + 9 W and 309 + 10W versus 295 + 9W, respectively). The amount of caffeine ingested during this study was relatively small, and yielded caffeine concentrations in the urine of less than 5 mg/L for the participants.

Another recent study by Cox et al. (2002) supported the use of caffeine both before and during cycling performance. This study involved a cycling time trial which occurred after 2 hours of steady state cycling at 70% of VO2max. Several different patterns of caffeine ingestion were utilized, including different levels before and during the trial. None of the methods caused an increase in caffeine concentration in the urine to exceed 12ug/ml. These results also demonstrate that ingestion of 1-3 mg/kg of caffeine produced the same level of performance enhanGRWOXXLent (~3%) as did the higher levels of caffeine intake (6 mg/kg).

Yeo et al. (2005) published a recent study that looked at the effects of caffeine ingestion on carbohydrate oxidation. Eight male cyclists exercised for 120 min on three separate occasions. During exercise, cyclists ingested either a 5.8% glucose solution (Glu; 48 g/h), 5.8% glucose solution with caffeine (Glu+Caf, 48 g/h + 5 mg·kg·h-1), or plain water (Wat). Average exogenous CHO oxidation over the 90- to 120-min period was 26% higher (p < 0.05) in Glu+Caf (0.72 +/- 0.04 g/min) compared with Glu (0.57 +/- 0.04 g/min). Total CHO oxidation rates were higher (p < 0.05) in the CHO ingestion trials compared with Wat, but they were highest when Glu+Caf was ingested (1.21 +/- 0.37, 1.84 +/- 0.14, and 2.47 +/- 0.23 g/min for Wat, Glu, and Glu+Caf, respectively; p < 0.05). There was also a trend (P = 0.082) toward an increased endogenous CHO oxidation with Glu+Caf (1.81 +/- 0.22 g/min vs. 1.27 +/- 0.13 g/min for Glu and 1.12 +/- 0.37 g/min for Wat). In conclusion, compared with glucose alone, 5 mg/kg caffeine (approximately 350mg caffeine for a 150lb athlete) co ingested with glucose increases exogenous CHO oxidation, possibly as a result of an enhanced intestinal absorption.

Doherty et al, (2005) recent meta-analysis of the use of caffeine ingestion on rate of perceived exertion (RPE) supports the use of caffeine as an ergogenic aid. Twenty-one studies were reviewed. In comparison to placebo, caffeine reduced RPE during exercise by 5.6% (95% CI). These values were significantly greater (p<0.05) than RPE obtained at the end of exercise (RPE % change, 0.01%; 95%). In addition, caffeine improved exercise performance by 11.2% (95% CI; 4.6 17.8%). Regression analysis revealed that RPE obtained during exercise could account for 29% of the variance in the improvement in exercise performance. These results demonstrate that caffeine reduces RPE during exercise, which may partly explain the subsequent ergogenic effects of caffeine on performance.

In a 2004 study, Doherty et al. investigated the effects of caffeine ingestion on a ‘preloaded’ protocol that involved cycling for 2 min at a constant rate of 100% maximal power output immediately followed by a 1-min ‘all-out’ effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5 mg·kg) or placebo. Ratings of perceived exertion (RPE; 6-20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120 s during the constant rate phase of the preloaded test (p <0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794+/-164 vs. 750+/-163 W; p=0.05). Blood lactate concentration 4, 5 and 6 min after exercise was also significantly higher by approximately 1 mmol in the caffeine trial (p <0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.

McClellan and Bell (2004) looked at the ergogenic role of ingesting coffee (COF) prior to the subsequent ingestion of anhydrous caffeine (CAF). Thirteen subjects performed 6 rides to exhaustion at 80 % VO2max 1.5 h after ingesting combinations of COF, decaffeinated coffee (DECOF), CAF, or placebo. Time to exhaustion was significantly greater for all trials with CAF compared to placebo. In conclusion, the prior consumption of COF did not alter the ergogenic effect of the subsequent ingestion of anhydrous CAF.

Brinbaum et al. (2004) observed the physiological effects of caffeine on cross-country runners during submaximal exercise. Ten college-age subjects (5 women; 5 men) volunteered to participate in this study. After completing a VO2max test, each subject completed 2 30-minute runs at 70% VO2max on the treadmill, 1 after ingesting caffeine and the other after ingesting a placebo. Tidal volume (TV), alveolar ventilation (VA), and rating of perceived exertion (RPE) were significantly different (p < 0.05) between treatment and control groups. The results suggest that the ingestion of caffeine at 7 mg·kg of body weight prior to submaximal running might provide a modest ergogenic effect via improved respiratory efficiency and psychological lift.

LATEST CAFFEINE RECOMMENDATIONSAN ERGOGENIC AID

AMOUNT low to moderate dose
3-9 mg/kg body weight

FORM Caffeine tablets, coffee, tea, caffeinated gels
BEWARE: caffeine content in energy drinks is often not listed so be aware of the presence of guarana extracts (an herbal caffeine source included in un-standardized amounts) as well as many other unknown ingredients

TIMING Ingest 60-75 minutes before event
ingest small amount during event (if carbonated, should be flat)
Ingest small amount late in endurance event (if carbonated, should be flat)

SIDE EFFECTS Anxiety, jitters, insomnia, inability to focus, GI unrest, irritability, dependency with withdrawal side effects
Mild side effects common with high doses (> 6 mg/kg)
Minimal side effects with low to moderate doses (3-6 mg/kg)

NOTE: CAFFEINE HAS BEEN REMOVED FROM WORLD ANTI-DOPING AGENCY’S (WADA) 2004 LIST OF PROHIBITED SUBSTANCES AND METHODS

It was previously thought that caffeine’s ergogenic effect was limited to endurance events lasting greater than 2 hours. Based on the latest clinical research, evidence now suggests that individual’s participating in short bouts of exercise may also benefit from the use of caffeine. The mechanism of action appears to be quite different and varied depending on the length of activity. There are very few controlled studies looking at the effects of caffeine on endurance events lasting longer than 2 hours.

For low to moderate intensity activities
Caffeine has been shown to stimulate the use of stored fat (free fatty acids). This in-turn spares carbohydrates and allows athletes to exercise longer.

For high Intensity activities
Caffeine improves the athlete’s rate of perceived exertion and oxidation of ingested carbohydrates as well as allowing for higher lactate levels to be reached. These physiological changes allow the athlete to push a little harder and may elicit improved performance.

The use of caffeine is ubiquitous. There does appear to be significant performance benefits. Caffeine is not a banned substance, although a survey of 140 competitors at the 2005 Ironman Triathlon World Championships revealed only 72% of the athletes were aware of this. 89% of athletes indicated they planned on using caffeine either before or during competition. Levels of plasma caffeine taken immediately post race indicated that athletes typically finish with quantities of caffeine that have been shown to improve endurance performance (i.e., approximately 20 micromol/L or a dose of > or = 3 mg/kg body weight). (Desbrow)

Recommendations:
Using caffeine as an ergogenic aid should be done with caution. Caffeine’s stimulatory effect on the central nervous system can pose harm to individuals at risk. On the day of your event consume caffeine prior to your event in a dose similar to what you are used to. If you choose to use caffeine as an ergogenic aid, do not consume more than 3 - 9 mg·kg body weight (that’s 210mg to 630mg for a 150 lb athlete). Excess caffeine can cause anxiety, irritability, delirium and hallucinations in high doses but certainly can make you jittery and give you stomach difficulty. Be aware of the possible side effects. Athletes should assess how their bodies respond to caffeine prior to the day of the race to determine if the use if beneficial for them. WADA’s removal of caffeine from its banned substance list does raise some concerns. If abused, caffeine can be detrimental and dangerous. Caffeine’s actions excitatory effects can cause injury if the dose is too high. We strongly urge all athletes wanting to use caffeine to do so cautiously.

Typical Caffeine amounts:
Caffeine tablet: 100 mg -200mg

Excedrin tablet: 65 mg

Chocolate: 1 bar equals 31 mg

Coffee brewed: 7 oz equals 80-135 mg

Coffee drip: 7 oz equals 115-175 mg

Coffee decaffeinated: 7 oz equals 5 mg

Coffee espresso: 2 oz equals 100 mg

Tea (leaf): 6 oz equals 50 mg

Tea (green) 177 ml equals 30 mg

Coca-cola classic: 12 oz equals 34 mg

Mountain Dew: 12 oz equals 54.5 mg

Jolt cola: 23.5 oz equals 150 mg

Red Bull: 8.2 oz equals 80 mg

Wired X 344: 16 oz equals 344 mg

References:

Attwood AS, Higgs S, Terry P. Differential responsiveness to caffeine and perceived effects of caffeine in moderate and high regular caffeine consumers. Psychopharmacology 2007; 190:469-477

Avois L, Robinson, N, Saudan C, Baume N, Mangin P, Saugy M, Central nervous system stimulants and sport practice. Br J Sports med 2006; 40 (suppl 1) i16-i20

Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports Exercise. 1978; 10: 155-158

Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Macrides TA, Martin DT, Moquin A, Roberts A, Hawley JA, Burke LM. Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol. 2002; 93(3):990-9.

Desbrow B, Leveritt M. Awareness and use of caffeine by athletes competing at the 2005 World Ironman Triathlon Championships. Int j Sport Nutr Exerc Metab. 2006 Oct;16(5):545-58.

Escohotado A, Symington K (May 1999) A brief history of Drugs: From the Stone age to the Stoned age. Park Street Press

Essig D, Costill DL, Van Handel RJ. Effects of caffeine ingestion on utilization of muscle glygogen and lipid during leg ergometer cycling. International Journal of Sports Med. 1980; 1:86-9

Fisher SM, McMurray RG, Berry M, et al. Influence of caffeine on exercise performance in habitual caffeine users. International Journal of Sports Med 1986;7:276-280

Greer F, Friars D, Graham TE; Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance.J Appl Physiol 2000 Nov;89(5):1837-44 Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

Ivy JL, Costill DL, Fink WJ, et al. Influence of caffeine and carbohydrate feedings on endurance performance Med Science Sports and Exercise. 1979; 11;6-1

Kovacs EMR, Stegen JHCH, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 1998; 85: 709-715.

Millard-Stafford ML, Cureston KJ, Wingo JE, Trilk J, Warren GL, Buyckx M. Hydration during warm, humid conditions: effect of a caffeinated sports drink. Int J Sport Nutr Exerc Metab. 2007 Apr;17(2):163-77.

Nathanson, J.A. (12 October 1984) Caffeine and related methylxanthines: possible naturally occurring pesticides Science 226 (4671) 184-187

Roti MW, Casa DJ, Pumerantz AC, Watson G, Judelson DA, Dias JC, Ruffin K, Armstrong LE. Thermoregulatory responses to exercise in the heat: chronic caffeine intake has no effect. Aviat Space Environ Med. 2006 Feb;77(2):124-9.

World Anti-Doping Association http://www.wada-ama.org

Caffeine Drug Info: http://www.nlm.nih.gov/medlineplus/...pdi/202105.html

Yeo SE, Jentjens RL, Wallis GA, Jeukendrup AE. Caffeine increases exogenous carbohydrate oxidation during exercise. J Appl Physiol. 2005 Sep;99(3):844-50. Epub 2005 Apr 14.

M. Doherty, P. M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Smith Scandinavian Journal of Medicine & Science in Sports. Volume 15 Issue 2 Page 69 - April 2005

Doherty M, Smith P, Hughes M, Davison R. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004 Jul;22(7):637-43. Department of Sport, Exercise and Biomedical Sciences, University of Luton, Luton LU1 3JU.

McLellan TM, Bell DG. The impact of prior coffee consumption on the subsequent ergogenic effect of anhydrous caffeine. Int J Sport Nutr Exerc Metab. 2004 Dec;14(6):698-708.

Birnbaum LJ, Herbst JD. Physiologic effects of caffeine on cross-country runners. J Strength Cond Res. 2004 Aug;18(3):463-5.

This post was written by:
Patricia Rosen MD - who has written 1 posts on Team First Endurance Blog.

Research Board Member Patricia Rosen resides Austin Texas. She is an accomplished age group triathlete and marathon runner. In 2003 & 2005 she was the age-group winner of the Ironstar Half Ironman. Her 2006 Freescale marathon qualified her to compete in the highly coveted Boston Marathon. Patricia works closely with local runners, cyclists and triathletes helping them get the most out of their training and nutrition. Her expertise and knowledge of endurance training allows her to offer exceptional support.

whatever it takes !!


Quote
RouleurBoy
(@rouleurboy)
New Member
Joined: 4 years ago
Posts: 1
 

Even better, caffeine aids recovery:

HAUSTIVE_EXERCISE_WHEN_CARBOHYDRATE_IS_CO_INGESTED
_WITH_CAFFEINE_" target="_blank"> http://www.unboundmedicine.com/medl..._WITH_CAFFEINE_

From a May 2008 study:

HIGH RATES OF MUSCLE GLYCOGEN RESYNTHESIS AFTER EXHAUSTIVE EXERCISE WHEN CARBOHYDRATE IS CO-INGESTED WITH CAFFEINE.

Author(s) Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, Watt MJ, Hawley JA

Institution Diabetes and Obesity, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.

Source J Appl Physiol 2008 May 8.

Abstract: We determined the effects of the co-ingestion of caffeine with carbohydrate on rates of muscle glycogen resynthesis during recovery from exhaustive exercise in 7 trained subjects who completed 2 experimental trials in a randomized, double-blind crossover design. Prior to an experiment subjects performed exhaustive cycling and consumed a low-carbohydrate diet. The following morning subjects reported to the lab and rode until volitional fatigue. Upon completion of this ride subjects consumed either carbohydrate (CHO; 4 g.kg BM(-1)) or carbohydrate plus caffeine (CAFF, 8 mg.kg BM(-1)) during 4 h of passive recovery. Muscle and blood samples were taken throughout recovery. Muscle glycogen levels were similar at exhaustion and increased by a similar amount after 1 h of recovery. After 4 h of recovery CAFF resulted in higher glycogen accumulation (313 +/- 69 vs. 234 +/- 50 mmol+/-kg- d.w, P<0.001). The overall rate of resynthesis for the 4 h recovery period was 66% higher in CAFF compared to CHO (57.7 +/- 18.5 vs. 38.0 +/- 7.7 mmol+/-kg-1 d.w.h-1, P < 0.05). Phosphorylation of CAMKThr286 was similar post-exercise and after 1 h of recovery but after 4 h CAMKThr286 phosphorylation was higher in CAFF than CHO (P<0.05). Phosphorylation of AMPKThr172 and AktSer473 was similar for both treatments at all time points. We provide the first evidence that in trained subjects, the coingestion of large amounts of caffeine with carbohydrate has an additive effect on rates on post-exercise muscle glycogen accumulation compared to when carbohydrate alone is consumed. Key words: Akt , AMPK, exhaustive exercise, CAMK


ReplyQuote
madtrack
(@madtrack)
Estimable Member
Joined: 6 years ago
Posts: 183
 

Both reports are true from my experience;caffein also works well with salbutamol.There are actually different caffeins too:caffein CIT/ Aik last longer and take up to 2 hrs to work;cant remember name of the more common,quicker acting caffein.M/track


ReplyQuote
jboldman
(@jboldman)
Member Moderator
Joined: 6 years ago
Posts: 1448
 

ver interesting.

jb


ReplyQuote
MaxWatts
(@maxwatts)
Eminent Member
Joined: 4 years ago
Posts: 21
 
Posted by: madtrack
Both reports are true from my experience;caffein also works well with salbutamol.There are actually different caffeins too:caffein CIT/ Aik last longer and take up to 2 hrs to work;cant remember name of the more common,quicker acting caffein.M/track

Mad- How would you suggest using salbutamol in addition to caffeine? Timing, dosage, etc.


ReplyQuote
KingMassimo
(@kingmassimo)
Eminent Member
Joined: 5 years ago
Posts: 34
 

Salbutamol taken pre ride = blocked legs. Even in tiny doses (2mg). It worked quite well as a reco agent taken post ride though. I didn't notice much until the daily dose reached 2 x 8mg (increased from 2 to 16mg over the course of a week...no sides).

I would consider using it again, but only once daily post ride (increasing quickly from 4mg to 16mg) followed by 1mg Ketotifen before bed. That would either be part of an ED short cycle (couple of weeks) or pulsed occasionally.


ReplyQuote
jboldman
(@jboldman)
Member Moderator
Joined: 6 years ago
Posts: 1448
 

no grogginess the following day from the keto?

jb


ReplyQuote
janqo
(@janqo)
New Member
Joined: 4 years ago
Posts: 3
 

what about Theophylline itself? I was trying it and I think it is working similarly as caffeine or ephedrine.
Any experience with this?
Thanks
J


ReplyQuote
pSimonkey
(@psimonkey)
Estimable Member
Joined: 6 years ago
Posts: 110
 

Nice find, I'm off for another green tea then.


ReplyQuote
madtrack
(@madtrack)
Estimable Member
Joined: 6 years ago
Posts: 183
 
Posted by: MaxWatts
Mad- How would you suggest using salbutamol in addition to caffeine? Timing, dosage, etc.

I use 100mg caff. 1hr b4 ride--then 100mg caff every 2 hrs.I have used 4mg salbut 2 hrs b4 ride no prob;but like king said it works better directly after ride(it has no positive effect on endurance;it will help breathing tho.);it takes away the low and lethargy after hard training;if ride is early AM 4mg after ride and 4mg 4hrs later is ok.there are no sides from salb;but i would not use after 4pm.M/track Last edited by madtrack on 06-04-2008 at 09:09 PM


ReplyQuote
KingMassimo
(@kingmassimo)
Eminent Member
Joined: 5 years ago
Posts: 34
 
Posted by: jboldman
no grogginess the following day from the keto?

jb

Never used the keto. I just heard it will maintain the Sal's effectiveness indefinitely and improve sleep on the cycle. Is that a common side?


ReplyQuote
jboldman
(@jboldman)
Member Moderator
Joined: 6 years ago
Posts: 1448
 

well it will definitely put you to sleep. for me, i wake up groggy. yes, it is a common side.

jb


ReplyQuote
madtrack
(@madtrack)
Estimable Member
Joined: 6 years ago
Posts: 183
 

Ket is used to extend life of clen(after 2 weeks clen starts to lose effectiveness)It also has a sedative effect supposedly similar to diazepam.I have never used Ket ;got info from those who have .M/track


ReplyQuote
Share: