Notifications
Clear all

Cordyceps?

4 Posts
3 Users
0 Likes
4,459 Views
fhg43
(@fhg43)
Eminent Member
Joined: 6 years ago
Posts: 22
Topic starter  

Has any tried high doses of cordyceps (?) as an endurance type supplement?

This is an herbal preparation (a mushroom) that mountain climbers in the Himalayas have used for decades. It helps them deal with the thin air at 20K'

FHG

I need a new slogan....and a new picture


   
Quote
JGUNS
(@jguns)
Member
Joined: 6 years ago
Posts: 138
 

Interesting supplement. It looks as though it may increase insulin sensitivity, as well as Testosterone production. Increased endurance may be hard to prove:

A Fermentation Product of Cordyceps sinensis Increases Whole-Body Insulin Sensitivity in Rats.

Balon TW, Jasman AP, Zhu JS.

Department of Diabetes, Endocrinology and Metabolism, Gonda Research Center, Beckman Research Institute of the City of Hope Medical Center, Duarte, CA.

OBJECTIVE: CordyMax trade mark Cs-4 (Cs-4) is a standardized mycelial fermentation product of Cordyceps sinensis, a fungus that has been used for various pharmacologic, metabolic, and ergogenic purposes. The goal of this investigation was to determine the effects of oral Cs-4 administration on whole-body insulin sensitivity, skeletal muscle glucose transport, and endurance performance. DESIGN: We studied different indices of carbohydrate metabolism in rats that received Cs-4 orally at a dose of 2 g/kg of body weight daily for 30 days. RESULTS: C-peptide response observed during the oral glucose tolerance test (OGTT) after 10 days of treatment was significantly decreased in the Cs-4-treated group (Cs-4, 52,802 +/- 4,124 vs. control, 70,696 +/- 6309 pM x 120 min; p < 0.05). The integrated insulin area under the curve (53.3 +/- 4.9 ng/mL x 120 minutes) and the glucose-insulin index (6.6 +/- 0.6 units) obtained from the OGTT were significantly decreased (p < 0.01) in the Cs-4-treated group compared to their vehicle-treated counterparts (82.1 +/- 8.1 ng/mL x 120 minutes; 9.9 +/- 0.7 units) after 20 days of treatment. Neither integrated glucose area under the curve observed during either OGTT, basal- or insulin-stimulated 2-deoxyglucose transport nor skeletal muscle GLUT-4 concentrations were affected by Cs-4 treatment. In addition, swim time to exhaustion did not differ between groups in this animal model. CONCLUSION: We conclude that CordyMax Cs-4 may have potential beneficial effects by maintaining whole-body glucose disposal with a less pronounced increase in insulin secretion after a carbohydrate challenge, however, its effects on endurance performance remain questionable.

Effects of Cordyceps sinensis on testosterone production in normal mouse Leydig cells.

Huang BM, Hsu CC, Tsai SJ, Sheu CC, Leu SF.

Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.

The stimulatory effect of Cordyceps sinensis (CS) on MA-10 mouse Leydig tumor cell steroidogenesis was previously demonstrated in our laboratory. In the present studies, we further determined the effect of CS on steroidogenesis in purified normal mouse Leydig cells. Different concentrations of CS (0.1-10 mg/ml) were added to Leydig cells without or with human chorionic gonadotropin (HCG) (50 ng/ml), and the steroid production was determined by radioimmunoassay (RIA). The results illustrated that CS stimulated normal mouse Leydig cell steroidogenesis in a dose-dependent relationship. CS at 3 mg/ml significantly stimulated testosterone production (p<0.05). Concerning the temporal relationship, CS at 3 mg/ml stimulated maximal testosterone production between 2 to 3 hr. Interestingly, hCG-stimulated testosterone productions were suppressed by CS in a dose-dependent relationship. CS also reduced dbcAMP-stimulated testosterone productions, which indicated that CS affected signal transduction pathway of steroidogenesis after the formation of cyclic AMP. Moreover, cycloheximide inhibited CS-treated mouse Leydig cell testosterone production, suggesting that new protein synthesis was required for CS-stimulated steroidogenesis.

CordyMax Cs-4 improves steady-state bioenergy status in mouse liver.

Dai G, Bao T, Xu C, Cooper R, Zhu JS.

Department of Pharmacology, Institute of Materia Medica, Peking Union Medical University, Chinese Academy of Medical Sciences, Beijing, China.

OBJECTIVE: To evaluate effects of CordyMax Cs-4, a mycelial fermentation product of Cordyceps sinensis, on energy metabolism. DESIGN: An in vivo pharmacology study using 31P nuclear magnetic resonance (NMR) spectroscopy. SUBJECTS AND STUDY INTERVENTIONS: Adult male C57-BL/6 mice were given an aqueous extract of CordyMax, 200 or 400 mg/kg per day or placebo for 7 days. OUTCOME MEASUREMENTS: Using 31P-NMR spectroscopy to measure cellular triphosphates and inorganic phosphate, expressed as a ratio to a reference peak, and calculate tissue pH. RESULTS: Steady-state beta adenosine triphosphate (ATP) increased in the liver of mice that received CordyMax (200 or 400 mg/kg per day) for 7 days, by 12.3% +/- 0.8% and 18.4% +/- 0.9%, respectively, compared to placebo controls (both p < 0.001), suggesting a higher hepatic bioenergy status in CordyMax-treated animals. Hepatic inorganic phosphate (Pi) decreased by 24.5% +/- 0.9% and 17.6% +/- 1.7% in the two treatment groups, respectively, compared to placebo controls (p < 0.001). The ratio of beta-ATP:Pi increased by 47.7% +/- 1.6% and 41.4% +/- 2.4%, respectively, in the treatment groups (both p < 0.001 compared to placebo). After discontinuation of CordyMax for 7 days, beta-ATP and Pi returned towards baseline. CONCLUSION: CordyMax is effective in improving bioenergy status in the murine liver, suggesting a mechanism underlying the known clinical effectiveness of CordyMax in alleviating fatigue and improving physical endurance, especially in elderly subjects.


   
ReplyQuote
fhg43
(@fhg43)
Eminent Member
Joined: 6 years ago
Posts: 22
Topic starter  
Posted by: JGUNS
Interesting supplement. It looks as though it may increase insulin sensitivity, as well as testosterone production. Increased endurance may be hard to prove:

A Fermentation Product of Cordyceps sinensis Increases Whole-Body Insulin Sensitivity in Rats.

Balon TW, Jasman AP, Zhu JS.

Department of Diabetes, Endocrinology and Metabolism, Gonda Research Center, Beckman Research Institute of the City of Hope Medical Center, Duarte, CA.

OBJECTIVE: CordyMax trade mark Cs-4 (Cs-4) is a standardized mycelial fermentation product of Cordyceps sinensis, a fungus that has been used for various pharmacologic, metabolic, and ergogenic purposes. The goal of this investigation was to determine the effects of oral Cs-4 administration on whole-body insulin sensitivity, skeletal muscle glucose transport, and endurance performance. DESIGN: We studied different indices of carbohydrate metabolism in rats that received Cs-4 orally at a dose of 2 g/kg of body weight daily for 30 days. RESULTS: C-peptide response observed during the oral glucose tolerance test (OGTT) after 10 days of treatment was significantly decreased in the Cs-4-treated group (Cs-4, 52,802 +/- 4,124 vs. control, 70,696 +/- 6309 pM x 120 min; p < 0.05). The integrated insulin area under the curve (53.3 +/- 4.9 ng/mL x 120 minutes) and the glucose-insulin index (6.6 +/- 0.6 units) obtained from the OGTT were significantly decreased (p < 0.01) in the Cs-4-treated group compared to their vehicle-treated counterparts (82.1 +/- 8.1 ng/mL x 120 minutes; 9.9 +/- 0.7 units) after 20 days of treatment. Neither integrated glucose area under the curve observed during either OGTT, basal- or insulin-stimulated 2-deoxyglucose transport nor skeletal muscle GLUT-4 concentrations were affected by Cs-4 treatment. In addition, swim time to exhaustion did not differ between groups in this animal model. CONCLUSION: We conclude that CordyMax Cs-4 may have potential beneficial effects by maintaining whole-body glucose disposal with a less pronounced increase in insulin secretion after a carbohydrate challenge, however, its effects on endurance performance remain questionable.

Effects of Cordyceps sinensis on testosterone production in normal mouse Leydig cells.

Huang BM, Hsu CC, Tsai SJ, Sheu CC, Leu SF.

Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.

The stimulatory effect of Cordyceps sinensis (CS) on MA-10 mouse Leydig tumor cell steroidogenesis was previously demonstrated in our laboratory. In the present studies, we further determined the effect of CS on steroidogenesis in purified normal mouse Leydig cells. Different concentrations of CS (0.1-10 mg/ml) were added to Leydig cells without or with human chorionic gonadotropin (hCG) (50 ng/ml), and the steroid production was determined by radioimmunoassay (RIA). The results illustrated that CS stimulated normal mouse Leydig cell steroidogenesis in a dose-dependent relationship. CS at 3 mg/ml significantly stimulated testosterone production (p<0.05). Concerning the temporal relationship, CS at 3 mg/ml stimulated maximal testosterone production between 2 to 3 hr. Interestingly, hCG-stimulated testosterone productions were suppressed by CS in a dose-dependent relationship. CS also reduced dbcAMP-stimulated testosterone productions, which indicated that CS affected signal transduction pathway of steroidogenesis after the formation of cyclic AMP. Moreover, cycloheximide inhibited CS-treated mouse Leydig cell testosterone production, suggesting that new protein synthesis was required for CS-stimulated steroidogenesis.

CordyMax Cs-4 improves steady-state bioenergy status in mouse liver.

Dai G, Bao T, Xu C, Cooper R, Zhu JS.

Department of Pharmacology, Institute of Materia Medica, Peking Union Medical University, Chinese Academy of Medical Sciences, Beijing, China.

OBJECTIVE: To evaluate effects of CordyMax Cs-4, a mycelial fermentation product of Cordyceps sinensis, on energy metabolism. DESIGN: An in vivo pharmacology study using 31P nuclear magnetic resonance (NMR) spectroscopy. SUBJECTS AND STUDY INTERVENTIONS: Adult male C57-BL/6 mice were given an aqueous extract of CordyMax, 200 or 400 mg/kg per day or placebo for 7 days. OUTCOME MEASUREMENTS: Using 31P-NMR spectroscopy to measure cellular triphosphates and inorganic phosphate, expressed as a ratio to a reference peak, and calculate tissue pH. RESULTS: Steady-state beta adenosine triphosphate (ATP) increased in the liver of mice that received CordyMax (200 or 400 mg/kg per day) for 7 days, by 12.3% +/- 0.8% and 18.4% +/- 0.9%, respectively, compared to placebo controls (both p < 0.001), suggesting a higher hepatic bioenergy status in CordyMax-treated animals. Hepatic inorganic phosphate (Pi) decreased by 24.5% +/- 0.9% and 17.6% +/- 1.7% in the two treatment groups, respectively, compared to placebo controls (p < 0.001). The ratio of beta-ATP:Pi increased by 47.7% +/- 1.6% and 41.4% +/- 2.4%, respectively, in the treatment groups (both p < 0.001 compared to placebo). After discontinuation of CordyMax for 7 days, beta-ATP and Pi returned towards baseline. CONCLUSION: CordyMax is effective in improving bioenergy status in the murine liver, suggesting a mechanism underlying the known clinical effectiveness of CordyMax in alleviating fatigue and improving physical endurance, especially in elderly subjects.

Thanks for the studies bro. Just what I was looking for.

FHG

I need a new slogan....and a new picture


   
ReplyQuote
anabolicguru
(@anabolicguru)
Active Member
Joined: 6 years ago
Posts: 15
 

I would totally like to purchase some of these. where can I ?

" I LIVE THE LIFE I DO BECAUSE TO MANY PEOPLE ARE AFRAID TO "

WWW.GROWXXL.COM
" Where The Big Dogs Play "


   
ReplyQuote
Share: